Bioavailability of Micronutrients From Nutrient-Dense Whole Foods: Zooming in on Dairy, Vegetables, and Fruits (2024)

1. Gibson R. The role of diet and host related factors in nutrient bioavailability. Food Nutr Bull. (2007) 28:S77–100. 10.1177/15648265070281S108 [PubMed] [CrossRef] [Google Scholar]

2. Davidsson L, Tanumihardjo S. New frontiers in science and technology: nuclear techniques in nutrition. Am J Clin Nutr. (2011) 94:691S−5S. 10.3945/ajcn.110.005819 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Fairweather-Tait SJ, Lynch S, Hotz C, Hurrell RF, Abrahamse L, Beebe S, et al.. The usefulness of in vitro models to assess iron and zinc bioavailability. Int J Vitam Nutr Res. (2005) 75:371–4. 10.1024/0300-9831.75.6.371 [PubMed] [CrossRef] [Google Scholar]

4. Etcheverry P, Grusak MA, Fleige LE. Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B6, B12, D, and E.Front Physiol. (2012) 3:317. 10.3389/fphys.2012.00317 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Elwood PC, Pickering JE, Ian Givens D, Gallacher JE. The consumption of milk and dairy foods and the incidence of vascular disease and diabetes: an overview of the evidence. Lipids. (2010) 45:925–39. 10.1007/s11745-010-3412-5 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Huth PJ, Park KM. Influence of dairy product and milk fat consumption on cardiovascular disease risk: a review of the evidence. Adv Nutr. (2012) 3:266–85. 10.3945/an.112.002030 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. de Goede J, Soedamah-Muthu SS, Pan A, Gijsbers L, Geleijnse JM. Dairy consumption and risk of stroke: a systematic review and updated dose-response meta-analysis of prospective cohort studies. J Am Heart Assoc. (2016) 5:e002787. 10.1161/JAHA.115.002787 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Drouin-Chartier J-P, Brassard D, Tessier-Grenier M, Côté JA, Labonté M-È, Desroches S, et al.. Systematic review of the association between dairy product consumption and risk of cardiovascular-related clinical outcomes. Adv Nutr An Int Rev J. (2016) 7:1026–40. 10.3945/an.115.011403 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Thorning TK, Raben A, Tholstrup T, Soedamah-Muthu SS, Givens I, Astrup A. Milk and dairy products: good or bad for human health? An assessment of the totality of scientific evidence. Food Nutr Res. (2016) 60:32527. 10.3402/fnr.v60.32527 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Soedamah-Muthu SS, de Goede J. Dairy consumption and cardiometabolic diseases: systematic review and updated meta-Analyses of prospective cohort studies. Curr Nutr Rep. (2018) 7:171–82. 10.1007/s13668-018-0253-y [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Van Den Heuvel EGHM, Steijns JMJM. Dairy products and bone health: how strong is the scientific evidence?Nutr Res Rev. (2018) 31:164–78. 10.1017/S095442241800001X [PubMed] [CrossRef] [Google Scholar]

12. Drewnowski A. The contribution of milk and milk products to micronutrient density and affordability of the U.S.Diet J Am Coll Nutr. (2011) 30:422S−8S. 10.1080/07315724.2011.10719986 [PubMed] [CrossRef] [Google Scholar]

13. Dugan CE, Fernandez ML. Effects of dairy on metabolic syndrome parameters: a review. J Biol Med. (2014) 87:135–47. [PMC free article] [PubMed] [Google Scholar]

14. Vissers PAJ, Streppel MT, Feskens EJM, de Groot LCPGM. The contribution of dairy products to micronutrient intake in the Netherlands. J Am Coll Nutr. (2011) 30:415S−21S. 10.1080/07315724.2011.10719985 [PubMed] [CrossRef] [Google Scholar]

15. Bath SC, Sleeth ML, McKenna M, Walter A, Taylor A, Rayman MP. Iodine intake and status of UK women of childbearing age recruited at the University of Surrey in the winter. Br J Nutr. (2014) 112:1715–23. 10.1017/S0007114514002797 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Olza J, Aranceta-Bartrina J, González-Gross M, Ortega RM, Serra-Majem L, Varela-Moreiras G, et al.. Reported dietary intake and food sources of zinc, selenium, and vitamins a, e and c in the Spanish population: findings from the anibes study. Nutrients. (2017) 9:697. 10.3390/nu9070697 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Herrick KA, Perrine CG, Aoki Y, Caldwell KL. Iodine status and consumption of key iodine sources in the U.S. population with special attention to reproductive age women. Nutrients. (2018) 10:874. 10.3390/nu10070874 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Partearroyo T, De Lourdes Samaniego-Vaesken M, Ruiz E, Olza J, Aranceta-Bartrina J, Gil Á, et al.. Dietary sources and intakes of folates and vitamin B12 in the Spanish population: findings from the ANIBES study. PLoS ONE. (2017) 12:e0189230. 10.1371/journal.pone.0189230 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Obeid R, Heil SG, Verhoeven MMA, van den Heuvel EGHM, de Groot LCPGM, Eussen SJPM. Vitamin B12 intake from animal foods, biomarkers, and health aspects. Front Nutr. (2019) 6:93. 10.3389/fnut.2019.00093 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Górska-Warsewicz H, Rejman K, Laskowski W, Czeczotko M.Milk and dairy products and their nutritional contribution to the average polish diet. Nutrients. (2019) 11:771 10.3390/nu11081771 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Powers HJ.Riboflavin (vitamin B-2) and health 1, 2. Am J Clin Nutr. (2003) 77:1352–60. 10.1093/ajcn/77.6.1352 [PubMed] [CrossRef] [Google Scholar]

22. Saedisomeolia A, Ashoori M. Riboflavin in human health: a review of current evidences. Adv Food Nutr Res. (2018) 83:57–81. 10.1016/bs.afnr.2017.11.002 [PubMed] [CrossRef] [Google Scholar]

23. Auclair O, Han Y, Burgos SA. Consumption of milk and alternatives and their contribution to nutrient intakes among Canadian adults: evidence from the 2015. Canadian community health survey-nutrition. Nutrients. (2019) 11:1–17. 10.3390/nu11081948 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Guéguen L, Pointillart A. The bioavailability of dietary calcium. J Am Coll Nutr. (2000) 19:119S−36. 10.1080/07315724.2000.10718083 [PubMed] [CrossRef] [Google Scholar]

25. Fishbein L. Multiple sources of dietary calcium - some aspects of its essentiality. Regul Toxicol Pharmacol. (2004) 39:67–80. 10.1016/j.yrtph.2003.11.002 [PubMed] [CrossRef] [Google Scholar]

26. Nordin BEC, Marshall DH.Calcium in biology. In: Nordin BEC, editor. Calcium in Biology. Berlin: Springer-Verlag; (1988). p. 447–71. [Google Scholar]

27. Heaney R, Recker R, Stegman M, Moy A. Calcium absorption in women: relationships to calcium intake, estrogen status, and age. J Bone Miner Res. (1989) 4:469–75. 10.1002/jbmr.5650040404 [PubMed] [CrossRef] [Google Scholar]

28. Avioli L. Calcium and osteoporosis. Annu Rev Nutr. (1984) 4:471–91. 10.1146/annurev.nu.04.070184.002351 [PubMed] [CrossRef] [Google Scholar]

29. Kaushik R, Sachdeva B, Arora S, Kapila S, Wadhwa BK. Bioavailability of vitamin D2 and calcium from fortified milk. Food Chem. (2014) 147:307–11. 10.1016/j.foodchem.2013.09.150 [PubMed] [CrossRef] [Google Scholar]

30. Lee YS, Noguchi T, Naito H.Intestinal absorption of calcium in rats given diets containing casein or amino acid mixture: the role of casein phosphopeptides. Br J Nutr. (1983) 49:67–76. 10.1079/BJN19830012 [PubMed] [CrossRef] [Google Scholar]

31. Mykkanen H, Wasserman R. Enhanced absorption of calcium by casein phosphopeptides in rachitic and normal chicks. J Nutr. (1980) 110:2141–8. 10.1093/jn/110.11.2141 [PubMed] [CrossRef] [Google Scholar]

32. Li Y, Tome D, Desjeux JF. Indirect effect of casein phosphopeptides on calcium absorption in rat ileum in vitro. Reprod Nutr Dev. (1989) 29:227–33. 10.1051/rnd:19890210 [PubMed] [CrossRef] [Google Scholar]

33. Bronner F. Current concepts of calcium absorption: an overview. J Nutr. (1992) 122(Suppl. 3) :641–3. 10.1093/jn/122.suppl_3.641 [PubMed] [CrossRef] [Google Scholar]

34. Whiting S, Draper H. The role of sulfate in the calciuria of high protein diets in adult rats. J Nutr. (1980) 110:212–22. 10.1093/jn/110.2.212 [PubMed] [CrossRef] [Google Scholar]

35. Kerstetter J, Allen L. Protein intake and calcium homeostasis. Adv Nutr Res. (1994) 9:167–81. 10.1007/978-1-4757-9092-4_10 [PubMed] [CrossRef] [Google Scholar]

36. Massey LK.Issues and opinions in nutrition does excess dietary protein adversely affect bone?J Nutr. (1998) 128:1054–7. 10.1093/jn/128.6.1048 [PubMed] [CrossRef] [Google Scholar]

37. Van Beresteijn ECH, Brussaard J, Van Schaik M. Relationship between the calcium-to-protein ratio in milk and the urinary calcium excretion in healthy adults - a controlled turnover study. Am J Clin Nutr. (1990) 52:142–6. 10.1093/ajcn/52.1.142 [PubMed] [CrossRef] [Google Scholar]

38. Linkswiler H, Zemel M, Hegsted M, Schuette S. Protein induced hypercalciuria. Fed Proc. (1981) 40:2429. [PubMed] [Google Scholar]

39. Hegsted M, Schuette S, Zemel M, Linkswiler H. Urinary calcium and calcium balance in young men as affected by level of protein and phosphorus intake. J Nutr. (1981) 111:553–62. 10.1093/jn/111.3.553 [PubMed] [CrossRef] [Google Scholar]

40. Allen L, Oddoye E, Margen S. Protein-induced hypercalciuria: a longer term study. Am J Clin Nutr. (1979) 32:741–9. 10.1093/ajcn/32.4.741 [PubMed] [CrossRef] [Google Scholar]

41. Allen LH. Calcium bioavailability and absorption: a review. Am J Clin Nutr. (1982) 35:783–808. 10.1093/ajcn/35.4.783 [PubMed] [CrossRef] [Google Scholar]

42. Miller D.Calcium in the diet; food sources, recommended intakes, and nutritional bioavailability. Adv Food Nutr Res. (1989) 33:104–55. 10.1016/S1043-4526(08)60127-8 [PubMed] [CrossRef] [Google Scholar]

43. Pansu D, Bellaton C, Bronner F. Effect of Ca intake on saturable and nonsaturable components of duodenal Ca transport. Am J Physiol Gastrointest Liver Physiol. (1981) 3:32–7. 10.1152/ajpgi.1981.240.1.G32 [PubMed] [CrossRef] [Google Scholar]

44. Cochet B, Jung A, Griessen M, Bartholdi P, Schaller P, Donath A. Effects of lactose on intestinal calcium absorption in normal and lactase-deficient subjects. Gastroenterology. (1983) 84:935–40. 10.1016/0016-5085(83)90194-4 [PubMed] [CrossRef] [Google Scholar]

45. Griessen M, Cochet B, Infante F, Jung A, Bartholdi P, Donath A, et al.. Calcium absorption from milk in lactase-deficient subjects. Am J Clin Nutr. (1989) 49:377–84. 10.1093/ajcn/49.2.377 [PubMed] [CrossRef] [Google Scholar]

46. Tremaine WJ, Newcomer AD, Lawrence Riggs B, McGill DB. Calcium absorption from milk in lactase-deficient and lactase-sufficient adults. Dig Dis Sci. (1986) 31:376–8. 10.1007/BF01311672 [PubMed] [CrossRef] [Google Scholar]

47. Nickel KP, Martin BR, Smith DL, Smith JB, Miller GD, Weaver CM. Calcium bioavailability from bovine milk and dairy products in premenopausal women using intrinsic and extrinsic labeling techniques. J Nutr. (1996) 126:1406–11. 10.1093/jn/126.5.1406 [PubMed] [CrossRef] [Google Scholar]

48. Schuette S, Yasillo N, Thompson C. The effect of carbohydrates in milk on the absorption of calcium by postmenopausal women. J Am Coll Nutr. (1991) 10:132–9. 10.1080/07315724.1991.10718137 [PubMed] [CrossRef] [Google Scholar]

49. Abrams SA, Griffin IJ, Davila PM. Calcium and zinc absorption from lactose-containing and lactose-free infant formulas. Am J Clin Nutr. (2002) 76:442–6. 10.1093/ajcn/76.2.442 [PubMed] [CrossRef] [Google Scholar]

50. Szilagyi A. Review article: lactose - A potential prebiotic. Aliment Pharmacol Ther. (2002) 16:1591–602. 10.1046/j.1365-2036.2002.01321.x [PubMed] [CrossRef] [Google Scholar]

51. Whisner CM, Martin BR, Schoterman MHC, Nakatsu CH, McCabe LD, McCabe GP, et al.. Galacto-oligosaccharides increase calcium absorption and gut bifidobacteria in young girls: a double-blind cross-over trial. Br J Nutr. (2013) 110:1292–303. 10.1017/S000711451300055X [PubMed] [CrossRef] [Google Scholar]

52. Hodges JK, Cao S, Cladis DP, Weaver CM. Lactose intolerance and bone health: the challenge of ensuring adequate calcium intake. Nutrients. (2019) 11:718. 10.3390/nu11040718 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Rizzoli R, Biver E, Bonjour JP, Coxam V, Goltzman D, Kanis JA, et al.. Benefits and safety of dietary protein for bone health—an expert consensus paper endorsed by the European Society for Clinical and Economical Aspects of Osteopororosis, Osteoarthritis, and Musculoskeletal Diseases and by the International Osteoporosis Foundation. Osteoporos Int. (2018) 29:1933–48. 10.1007/s00198-018-4534-5 [PubMed] [CrossRef] [Google Scholar]

54. Bonjour JP, Kraenzlin M, Levasseur R, Warren M, Whiting S. Dairy in adulthood: from foods to nutrient interactions on bone and skeletal muscle health. J Am Coll Nutr. (2013) 32:251–63. 10.1080/07315724.2013.816604 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Buchowski MS, Miller DD.Calcium bioavailability from ripening cheddar cheese. J Food Sci. (1990) 55:1293–5. 10.1111/j.1365-2621.1990.tb03919.x [CrossRef] [Google Scholar]

56. Spencer H, Kramer L, Osis D. Do protein and phosphorus cause calcium loss?J Nutr. (1988) 118:657–60. 10.1093/jn/118.6.657 [PubMed] [CrossRef] [Google Scholar]

57. Calvo MS, Tucker KL. Is phosphorus intake that exceeds dietary requirements a risk factor in bone health?Ann N Y Acad Sci. (2013) 1301:29–35. 10.1111/nyas.12300 [PubMed] [CrossRef] [Google Scholar]

58. Takeda E, Yamamoto H, Yamanaka-Okumura H, Taketani Y. Dietary phosphorus in bone health and quality of life. Nutr Rev. (2012) 70:311–21. 10.1111/j.1753-4887.2012.00473.x [PubMed] [CrossRef] [Google Scholar]

59. Recker R, Heaney R. The effect of milk supplements on calcium metabolism, bone metabolism and calcium balance. Am J Clin Nutr. (1985) 41:254–63. 10.1093/ajcn/41.2.254 [PubMed] [CrossRef] [Google Scholar]

60. Herrero C, Granado F, Blanco I, Olmedilla B. Vitamin A and E content in dairy products: their contribution to the recommended dietary allowances (RDA) for elderly people. J Nutr Heal Aging. (2002) 6:57–9. 10.1007/s00394-006-0612-0 [PubMed] [CrossRef] [Google Scholar]

61. Dainty JR, Bullock NR, Hart DJ, Hewson AT, Turner R, Finglas PM, et al.. Quantification of the bioavailability of riboflavin from foods by use of stable-isotope labels and kinetic modeling. Am J Clin Nutr. (2007) 85:1557–64. 10.1093/ajcn/85.6.1557 [PubMed] [CrossRef] [Google Scholar]

62. Gille D, Schmid A. Vitamin B12 in meat and dairy products. Nutr Rev. (2015) 73:106–15. 10.1093/nutrit/nuu011 [PubMed] [CrossRef] [Google Scholar]

63. Fedosov SN, Nexo E, Heegaard CW. Vitamin B 12 and its binding proteins in milk from cow and buffalo in relation to bioavailability of B 12. J Dairy Sci. (2019) 102:4891–905. 10.3168/jds.2018-15016 [PubMed] [CrossRef] [Google Scholar]

64. Russell RM, Baik H, Kehayias JJ. Older men and women efficiently absorb vitamin B-12 from milk and fortified bread. J Nutr. (2001) 131:291–3. 10.1093/jn/131.2.291 [PubMed] [CrossRef] [Google Scholar]

65. Doets EL, In't Veld PH, Szczecinska A, Dhonukshe-Rutten RAM, Cavelaars AEJM, Van 't Veer P, et al.. Systematic review on daily vitamin B 12 losses and bioavailability for deriving recommendations on vitamin B 12 intake with the factorial approach. Ann Nutr Metab. (2013) 62:311–22. 10.1159/000346968 [PubMed] [CrossRef] [Google Scholar]

66. Naik S, Mahalle N, Greibe E, Ostenfeld MS, Heegaard CW, Nexo E, et al.. Hydroxo-B12 for supplementation in B12 deficient lactovegetarians. (2019) 12:1–14. 10.3390/nu11102382 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Walther B, Karl JP, Booth SL, Boyaval P. Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin K requirements. Adv Nutr. (2013) 4:463–73. 10.3945/an.113.003855 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Geleijnse JM, Vermeer C, Grobbee DE, Schurgers LJ, Knapen MHJ, van der Meer IM, et al.. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam study. J Nutr. (2004) 134:3100–5. 10.1093/jn/134.11.3100 [PubMed] [CrossRef] [Google Scholar]

69. Gast GCM, de Roos NM, Sluijs I, Bots ML, Beulens JWJ, Geleijnse JM, et al.. A high menaquinone intake reduces the incidence of coronary heart disease. Nutr Metab Cardiovasc Dis. (2009) 19:504–10. 10.1016/j.numecd.2008.10.004 [PubMed] [CrossRef] [Google Scholar]

70. Fu X, Harshman SG, Shen X, Haytowitz DB, Karl JP, Wolfe BE, et al.. Multiple vitamin K forms exist in dairy foods. Curr Dev Nutr. (2017) 1:e000638. 10.3945/cdn.117.000638 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Vermeer C, Raes J, van 't Hoofd C, Knapen MHJ, Xanthoulea S. Menaquinone content of cheese. Nutrients. (2018) 10:446. 10.3390/nu10040446 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Knapen MHJ, Braam LAJLM, Teunissen KJ, Van't Hoofd CM, Zwijsen RML, Van Den Heuvel EGHM, et al.. Steady-state vitamin K2 (menaquinone-7) plasma concentrations after intake of dairy products and soft gel capsules. Eur J Clin Nutr. (2016) 70:831–6. 10.1038/ejcn.2016.3 [PubMed] [CrossRef] [Google Scholar]

73. Marles RJ, Roe AL, Oketch-Rabah HA. US pharmacopeial convention safety evaluation of menaquinone-7, a form of vitamin K.Nutr Rev. (2017) 75:553–78. 10.1093/nutrit/nux022 [PubMed] [CrossRef] [Google Scholar]

74. St-Jules DE, Jagannathan R, Gutekunst L, Kalantar-Zadeh K, Sevick MA. Examining the proportion of dietary phosphorus from plants, animals, and food additives excreted in urine. J Ren Nutr. (2017) 27:78–83. 10.1053/j.jrn.2016.09.003 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. McClure ST, Rebholz CM, Phillips KM, Champagne CM, Selvin E, Appel LJ. The percentage of dietary phosphorus excreted in the urine varies by dietary pattern in a randomized feeding study in adults. J Nutr. (2019) 149:816–23. 10.1093/jn/nxy318 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Blakeborough P, Salter DN, Gurr MI. Zinc binding in cow's milk and human milk. Biochem J. (1983) 209:505–12. 10.1042/bj2090505 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Sandström B, Cederblad ALB. Zinc absorption from human milk, cow's milk, and infant formulas. Am J Dis Child. (1983) 137:726–9. 10.1001/archpedi.1983.02140340010002 [PubMed] [CrossRef] [Google Scholar]

78. Talsma EF, Moretti D, Ly SC, Dekkers R, van den Heuvel EGHM, Fitri A, et al.. Zinc absorption from milk is affected by dilution but not by thermal processing, and milk enhances absorption of zinc from high-phytate rice in young Dutch women. J Nutr. (2017) 147:1086–93. 10.3945/jn.116.244426 [PubMed] [CrossRef] [Google Scholar]

79. Lönnerdal B. Dietary factors influencing zinc absorption 1. J Nutr. (2000) 130:1378S−83S. 10.1093/jn/130.5.1378S [PubMed] [CrossRef] [Google Scholar]

80. Ekmekcioglu C. Intestinal bioavailability of minerals and trace elements from milk and beverages in humans. Nahrung Food. (2000) 44:390–7. 10.1002/1521-3803(20001201)44:6<390::AID-FOOD390>3.0.CO;2-Y [PubMed] [CrossRef] [Google Scholar]

81. Vegarud GE, Langsrud T, Svenning C. Mineral-binding milk proteins and peptides; occurrence, biochemical and technological characteristics. Br J Nutr. (2000) 84:91–8. 10.1017/S0007114500002300 [PubMed] [CrossRef] [Google Scholar]

82. Brink EJ, Dekker PR, Van Beresteijn ECH, Beynen AC. Bioavailability of magnesium and calcium from cow's milk and soya-bean beverage in rats. Br J Nutr. (1992) 68:271–82. 10.1079/BJN19920084 [PubMed] [CrossRef] [Google Scholar]

83. Brink EJ, van Beresteijn ECH, Dekker PR, Beynen AC. Urinary excretion of magnesium and calcium as an index of absorption is not affected by lactose intake in healthy adults. Br J Nutr. (1993) 69:863–70. 10.1079/BJN19930086 [PubMed] [CrossRef] [Google Scholar]

84. van den Heuvel EGHM, Muijs T, Brouns F, Hendriks HFJ. Short-chain fructo-oligosaccharides improve magnesium absorption in adolescent girls with a low calcium intake. Nutr Res. (2009) 29:229–37. 10.1016/j.nutres.2009.03.005 [PubMed] [CrossRef] [Google Scholar]

85. Whisner CM, Castillo LF. Prebiotics, bone and mineral metabolism. Calcif Tissue Int. (2018) 102:443–79. 10.1007/s00223-017-0339-3 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. van der Reijden OL, Zimmermann MB, Galetti V. Iodine in dairy milk: sources, concentrations and importance to human health. Best Pract Res Clin Endocrinol Metab. (2017) 31:385–95. 10.1016/j.beem.2017.10.004 [PubMed] [CrossRef] [Google Scholar]

87. van de Kamp ME, Saridakis I, Verkaik-Kloosterman J. Iodine content of semi-skimmed milk available in the Netherlands depending on farming (organic versus conventional) and heat treatment (pasteurized versus UHT) and implications for the consumer. J Trace Elem Med Biol. (2019) 56:178–83. 10.1016/j.jtemb.2019.08.008 [PubMed] [CrossRef] [Google Scholar]

88. Van Der Reijden OL, Galetti V, Bürki S, Zeder C, Krzystek A, Haldimann M, et al.. Iodine bioavailability from cow milk: a randomized, crossover balance study in healthy iodine-replete adults. Am J Clin Nutr. (2019) 110:102–10. 10.1093/ajcn/nqz092 [PubMed] [CrossRef] [Google Scholar]

89. Aune D, Giovannucci E, Boffetta P, Fadnes LT, Keum NN, Norat T, et al.. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-A systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol. (2017) 46:1029–56. 10.1093/ije/dyw319 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Wang X, Ouyang Y, Liu J, Zhu M, Zhao G, Bao W, et al.. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ. (2014) 349:g4490. 10.1136/bmj.g4490 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Hall JN, Moore S, Harper SB, Lynch JW. Global variability in fruit and vegetable consumption. Am J Prev Med. (2009) 36:402–9.e5 10.1016/j.amepre.2009.01.029 [PubMed] [CrossRef] [Google Scholar]

92. Lock K, Pomerleau J, Causer L, Altmann DR, Mckee M. The global burden of disease attributable to low consumption of fruit and vegetables: implications for the global strategy on diet. Bull WHO. (2005) 83:100–8. [PMC free article] [PubMed] [Google Scholar]

93. Auestad N, Hurley JS, Fulgoni VL, Schweitzer CM. Contribution of food groups to energy and nutrient intakes in five developed countries. Nutrients. (2015) 7:4593–618. 10.3390/nu7064593 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Cassidy A, Minihane AM. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr. (2017) 105:10–22. 10.3945/ajcn.116.136051 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Scholz-Ahrens KE, Schrezenmeir J. Inulin, oligofructose and mineral metabolism — experimental data and mechanism. Br J Nutr. (2002) 87:S179–86. 10.1079/BJN/2002535 [PubMed] [CrossRef] [Google Scholar]

96. Riedl J, Linseisen J, Hoffmann J, Wolfram G. Some dietary fibers reduce the absorption of carotenoids in women. J Nutr. (1999) 129:2170–6. 10.1093/jn/129.12.2170 [PubMed] [CrossRef] [Google Scholar]

97. Bohn T. Dietary factors affecting polyphenol bioavailability. Nutr Rev. (2014) 72:429–52. 10.1111/nure.12114 [PubMed] [CrossRef] [Google Scholar]

98. Bohn T.Bioavailability of Non-Provitamin A carotenoids. Curr Nutr Food Sci. (2008) 4:240–58. 10.2174/157340108786263685 [CrossRef] [Google Scholar]

99. Sandberg A. The effect of food processing on phytate hydrolysis and availability of iron and zinc. Adv Exp Med Biol. (1991) 289:499–508. 10.1007/978-1-4899-2626-5_33 [PubMed] [CrossRef] [Google Scholar]

100. Castenmiller JJM, West CE, Linssen JPH, van het Hof KH, Voragen AGJ. The food matrix of spinach is a limiting factor in determining the bioavailability of β-Carotene and to a lesser extent of lutein in humans. J Nutr. (1999) 129:349–55. 10.1093/jn/129.2.349 [PubMed] [CrossRef] [Google Scholar]

101. van het Hof KH, Tijburg LBM, Pietrzik K, Weststrate JA. Influence of feeding different vegetables on plasma levels of carotenoids, folate and vitamin C. Effect of disruption of the vegetable matrix. Br J Nutr. (1999) 82:203–12. 10.1017/S0007114599001385 [PubMed] [CrossRef] [Google Scholar]

102. Schweiggert RM, Mezger D, Schimpf F, Steingass CB, Carle R. Influence of chromoplast morphology on carotenoid bioaccessibility of carrot, mango, papaya, and tomato. Food Chem. (2012) 135:2736–42. 10.1016/j.foodchem.2012.07.035 [PubMed] [CrossRef] [Google Scholar]

103. Schweiggert RM, Kopec RE, Villalobos-Gutierrez MG, Högel J, Quesada S, Esquivel P, et al.. Carotenoids are more bioavailable from papaya than from tomato and carrot in humans: a randomised cross-over study. Br J Nutr. (2014) 111:490–8. 10.1017/S0007114513002596 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Van Loo-Bouwman CA, Naber THJ, Schaafsma G. A review of vitamin A equivalency of β-carotene in various food matrices for human consumption. Br J Nutr. (2014) 111:2153–66. 10.1017/S0007114514000166 [PubMed] [CrossRef] [Google Scholar]

105. Institute of Medicine Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc.Washington DC: National Academy Press; (2001). [PubMed] [Google Scholar]

106. Burri BJ. Beta-cryptoxanthin as a source of vitamin A.J Sci Food Agric. (2015) 95:1786–94. 10.1002/jsfa.6942 [PubMed] [CrossRef] [Google Scholar]

107. Burri BJ, La Frano MR, Zhu C. Absorption, metabolism, and functions of β-cryptoxanthin. Nutr Rev. (2016) 74:69–82. 10.1093/nutrit/nuv064 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Brown MJ, Ferruzzi MG, Nguyen ML, Cooper DA, Eldridge AL, Schwartz SJ, et al.. Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. Am J Clin Nutr. (2004) 80:396–403. 10.1093/ajcn/80.2.396 [PubMed] [CrossRef] [Google Scholar]

109. Goltz SR, Campbell WW, Chitchumroonchokchai C, Failla ML, Ferruzzi MG. Meal triacylglycerol profile modulates postprandial absorption of carotenoids in humans. Mol Nutr Food Res. (2012) 56:866–77. 10.1002/mnfr.201100687 [PubMed] [CrossRef] [Google Scholar]

110. White WS, Zhou Y, Crane A, Dixon P, Quadt F, Flendrig LM. Modeling the dose effects of soybean oil in salad dressing on carotenoid and fat-soluble vitamin bioavailability in salad vegetables. Am J Clin Nutr. (2017) 106:1041–51. 10.3945/ajcn.117.153635 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Melse-Boonstra A, Verhoef P, West CE, Van Rhijn JA, Van Breemen RB, Lasaroms JJP, et al.. A dual-isotope-labeling method of studying the bioavailability of hexaglutamyl folic acid relative to that of monoglutamyl folic acid in humans by using multiple orally administered low doses. Am J Clin Nutr. (2006) 84:1128–33. 10.1093/ajcn/84.5.1128 [PubMed] [CrossRef] [Google Scholar]

112. Melse-Boonstra A, West CE, Katan MB, Kok FJ, Verhoef P. Bioavailability of heptaglutamyl relative to monoglutamyl folic acid in healthy adults. Am J Clin Nutr. (2004) 79:424–9. 10.1093/ajcn/79.3.424 [PubMed] [CrossRef] [Google Scholar]

113. Pietrzik K, Bailey L, Shane B. Folic acid and L-5-methyltetrahydrofolate comparison of clinical pharmaco*kinetics and pharmacodynamics. Clin Pharmaco*kinetics. (2010) 49:535–48. 10.2165/11532990-000000000-00000 [PubMed] [CrossRef] [Google Scholar]

114. Melse-Boonstra A.Dietary Folate: Bioavailability Studies in Humans (PhD thesis). Wageningen University; (2003). p. 1–166. [Google Scholar]

115. Institute of Medicine Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline.Washington DC: National Academy Press; (1998). [PubMed] [Google Scholar]

116. Packer JE, Slater TF, Willson RL. Direct observation of a free radical interaction between vitamin E and vitamin C [13]. Nature. (1979) 278:737–8. 10.1038/278737a0 [PubMed] [CrossRef] [Google Scholar]

117. Carr AC, Vissers MCM.Synthetic or food-derived vitamin C-are they equally bioavailable?Nutrients. (2013) 5:4284–304. 10.3390/nu5114284 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

118. Padayatty SJ, Levine M. Vitamin C: the known and the unknown and goldilocks. Oral Dis. (2016) 22:463–93. 10.1111/odi.12446 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Tanaka K, Hashimoto T, Tokumaru S, Iguchi H, Kojo S. Interactions between vitamin C and vitamin E are observed in tissues of inherently scorbutic rats. J Nutr. (1997) 127:2060–4. 10.1093/jn/127.10.2060 [PubMed] [CrossRef] [Google Scholar]

120. Song J, Kwon O, Chen S, Daruwala R, Eck P, Park JB, et al.. Flavonoid inhibition of sodium-dependent vitamin C transporter 1 (SVCT1) and glucose transporter isoform 2 (GLUT2), intestinal transporters for vitamin C and glucose. J Biol Chem. (2002) 277:15252–60. 10.1074/jbc.M110496200 [PubMed] [CrossRef] [Google Scholar]

121. Corpe CP, Lee JH, Kwon O, Eck P, Narayanan J, Kirk KL, et al.. 6-Bromo-6-deoxy-L-ascorbic acid: an ascorbate analog specific for Na +-dependent vitamin C transporter but not glucose transporter pathways. J Biol Chem. (2005) 280:5211–20. 10.1074/jbc.M412925200 [PubMed] [CrossRef] [Google Scholar]

122. Park JB, Levine M. Intracellular accumulation of ascorbic acid is inhibited by flavonoids via blocking of dehydroascorbic acid and ascorbic acid uptakes in HL-60, U937 and jurkat cells. J Nutr. (2000) 130:1297–302. 10.1093/jn/130.5.1297 [PubMed] [CrossRef] [Google Scholar]

123. Bolton-Smith C, Price RJG, Fenton ST, Harrington DJ, Shearer MJ. Compilation of a provisional UK database for the phylloquinone (vitamin K1) content of foods. Br J Nutr. (2000) 83:389–99. [PubMed] [Google Scholar]

124. Halder M, Petsophonsakul P, Akbulut AC, Pavlic A, Bohan F, Anderson E, et al.. Vitamin K: double bonds beyond coagulation insights into differences between vitamin K1 and K2 in health and disease. Int J Mol Sci. (2019) 20:896. 10.3390/ijms20040896 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Gijsbers BLMG, Jie K-SG, Vermeer C. Effect of food composition on vitamin K absorption in human volunteers. Br J Nutr. (1996) 76:223–9. 10.1079/BJN19960027 [PubMed] [CrossRef] [Google Scholar]

126. Novotny JA, Kurilich AC, Britz SJ, Baer DJ, Clevidence BA. Vitamin K absorption and kinetics in human subjects after consumption of 13C-labelled phylloquinone from kale. Br J Nutr. (2010) 104:858–62. 10.1017/S0007114510001182 [PubMed] [CrossRef] [Google Scholar]

127. Beulens JWJ, Booth SL, Van Den Heuvel EGHM, Stoecklin E, Baka A, Vermeer C. The role of menaquinones (vitamin K2) in human health. Br J Nutr. (2013) 110:1357–68. 10.1017/S0007114513001013 [PubMed] [CrossRef] [Google Scholar]

128. Geleijnse JM, Kok FJ, Grobbee DE. Blood pressure response to changes in sodium and potassium intake: a metaregression analysis of randomised trials. J Hum Hypertens. (2003) 17:471–80. 10.1038/sj.jhh.1001575 [PubMed] [CrossRef] [Google Scholar]

129. Binia A, Jaeger J, Hu Y, Singh A, Zimmermann D. Daily potassium intake and sodium-to-potassium ratio in the reduction of blood pressure: a meta-analysis of randomized controlled trials. J Hypertens. (2015) 33:1509–20. 10.1097/HJH.0000000000000611 [PubMed] [CrossRef] [Google Scholar]

130. Naismith DJ, Braschi A. An investigation into the bioaccessibility of potassium in unprocessed fruits and vegetables. Int J Food Sci Nutr. (2008) 59:438–50. 10.1080/09637480701690519 [PubMed] [CrossRef] [Google Scholar]

131. MacDonald-Clarke CJ, Martin BR, McCabe LD, McCabe GP, Lachcik PJ, Wastney M, et al.. Bioavailability of potassium from potatoes and potassium gluconate: a randomized dose response trial. Am J Clin Nutr. (2016) 104:346–53. 10.3945/ajcn.115.127225 [PubMed] [CrossRef] [Google Scholar]

132. Stone MS, Martyn L, Weaver CM. Potassium intake, bioavailability, hypertension, and glucose control. Nutrients. (2016) 8:444. 10.3390/nu8070444 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

133. Heaney RP, Weaver CM. Calcium absorption from kale. Am J Clin Nutr. (1990) 51:656–7. 10.1093/ajcn/51.4.656 [PubMed] [CrossRef] [Google Scholar]

134. Weaver CM, Heaney RP, Nickel KP, Packard PI.Calcium bioavailability from high oxalate vegetables: Chinese vegetables, sweet potatoes and rhubarb. J Food Sci. (1997) 62:524–5. 10.1111/j.1365-2621.1997.tb04421.x [CrossRef] [Google Scholar]

135. Charoenkiatkul S, Kriengsinyos W, Tuntipopipat S, Suthutvoravut U, Weaver CM. Calcium absorption from commonly consumed vegetables in healthy Thai women. J Food Sci. (2008) 73:H218–21. 10.1111/j.1750-3841.2008.00949.x [PubMed] [CrossRef] [Google Scholar]

136. Heaney RP, Weaver CM, Hinders S, Martin B, Packard PT.Absorbability of calcium from brassica vegetables: broccoli, bok choy, and kale. J Food Sci. (1993) 58:1378–80. 10.1111/j.1365-2621.1993.tb06187.x [CrossRef] [Google Scholar]

137. Bohn T, Davidsson L, Walczyk T, Hurrell RF. Fractional magnesium absorption is significantly lower in human subjects from a meal served with an oxalate-rich vegetable, spinach, as compared with a meal served with kale, a vegetable with a low oxalate content. Br J Nutr. (2004) 91:601–6. 10.1079/BJN20031081 [PubMed] [CrossRef] [Google Scholar]

138. Vormann J. Magnesium : nutrition and metabolism. Mol Aspects Med. (2003) 24:27–37. 10.1016/S0098-2997(02)00089-4 [PubMed] [CrossRef] [Google Scholar]

139. Schuchardt JP, Hahn A. Intestinal absorption and factors influencing bioavailability of magnesium - An update. Curr Nutr Food Sci. (2017) 13:260–78. 10.2174/1573401313666170427162740 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

140. McMillan T, Johnston F. The absorption of iron from spinach by six young women, and the effect of beef upon the absorption. J Nutr. (1951) 44:383–98. 10.1093/jn/44.3.383 [PubMed] [CrossRef] [Google Scholar]

141. Crispin DJ, Street G, Varey JE.Kinetics of the decomposition of [2Fe-2S] ferredoxin from spinach: implications for iron bioavailability and nutritional status. Food Chem. (2001) 72:355–62. 10.1016/S0308-8146(00)00236-3 [CrossRef] [Google Scholar]

142. Hallberg L, Brune M, Rossander L. Effect of ascorbic acid on iron absorption from different types of meals. Studies with ascorbic-acid-rich foods and synthetic ascorbic acid given in different amounts with different meals. Hum Nutr Appl Nutr. (1986) 40:97–113. [PubMed] [Google Scholar]

143. Lane DJR, Bae DH, Merlot AM, Sahni S, Richardson DR. Duodenal cytochrome b (DCYTB) in iron metabolism: an update on function and regulation. Nutrients. (2015) 7:2274–96. 10.3390/nu7042274 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

144. Hallberg L, Brune M, Rossander L. Iron absorption in man: ascorbic acid and dose-dependent inhibition by phytate. Am J Clin Nutr. (1989) 49:140–4. 10.1093/ajcn/49.1.140 [PubMed] [CrossRef] [Google Scholar]

145. Bonsmann SSG, Walczyk T, Renggli S, Hurrell RF. Oxalic acid does not influence nonhaem iron absorption in humans: a comparison of kale and spinach meals. Eur J Clin Nutr. (2008) 62:336–41. 10.1038/sj.ejcn.1602721 [PubMed] [CrossRef] [Google Scholar]

146. Scheers N, Rossander-Hulthen L, Torsdottir I, Sandberg AS. Increased iron bioavailability from lactic-fermented vegetables is likely an effect of promoting the formation of ferric iron (Fe3+). Eur J Nutr. (2016) 55:373–82. 10.1007/s00394-015-0857-6 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Bioavailability of Micronutrients From Nutrient-Dense Whole Foods: Zooming in on Dairy, Vegetables, and Fruits (2024)
Top Articles
Latest Posts
Article information

Author: Manual Maggio

Last Updated:

Views: 6274

Rating: 4.9 / 5 (49 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Manual Maggio

Birthday: 1998-01-20

Address: 359 Kelvin Stream, Lake Eldonview, MT 33517-1242

Phone: +577037762465

Job: Product Hospitality Supervisor

Hobby: Gardening, Web surfing, Video gaming, Amateur radio, Flag Football, Reading, Table tennis

Introduction: My name is Manual Maggio, I am a thankful, tender, adventurous, delightful, fantastic, proud, graceful person who loves writing and wants to share my knowledge and understanding with you.